- function digits
- function digits DAT funktionelle Ziffern fpl
English-German dictionary of Electrical Engineering and Electronics. 2013.
English-German dictionary of Electrical Engineering and Electronics. 2013.
Hash function — A hash function is any well defined procedure or mathematical function for turning some kind of data into a relatively small integer, that may serve as an index into an array. The values returned by a hash function are called hash values, hash… … Wikipedia
Conway base 13 function — The Conway base 13 function is a function created by British mathematician John H. Conway as a counterexample to the converse of the intermediate value theorem. In other words, even though Conway s function f is not continuous, if… … Wikipedia
Ackermann function — In recursion theory, the Ackermann function or Ackermann Péter function is a simple example of a general recursive function that is not primitive recursive. General recursive functions are also known as computable functions. The set of primitive… … Wikipedia
Computable function — Total recursive function redirects here. For other uses of the term recursive function , see Recursive function (disambiguation). Computable functions are the basic objects of study in computability theory. Computable functions are the formalized … Wikipedia
One-way function — Unsolved problems in computer science Do one way functions exist? In computer science, a one way function is a function that is easy to compute on every input, but hard to invert given the image of a random input. Here easy and hard are to be… … Wikipedia
Euler's totient function — For other functions named after Euler, see List of topics named after Leonhard Euler. The first thousand values of φ(n) In number theory, the totient φ(n) of a positive integer n is defined to be the number of positive integers less than or equal … Wikipedia
Cantor function — In mathematics, the Cantor function, named after Georg Cantor, is an example of a function that is continuous, but not absolutely continuous. DefinitionThe Cantor function c : [0,1] → [0,1] is defined as follows:#Express x in base 3. If possible … Wikipedia
Riesz function — In mathematics, the Riesz function is an entire function defined by Marcel Riesz in connection with the Riemann hypothesis, by means of the power series:{ m Riesz}(x) = sum {k=1}^infty frac{( x)^k}{(k 1)! zeta(2k)}If we set F(x) = frac12 { m… … Wikipedia
Dickman function — The Dickman–de Bruijn function ρ(u) plotted on a logarithmic scale. The horizontal axis is the argument u, and the vertical axis is the value of the function. The graph nearly makes a downward line on the logarithmic scale, demonstrating that the … Wikipedia
Dickman-de Bruijn function — In analytic number theory, Dickman s function is a special function used to estimate the proportion of smooth numbers up to a given bound.Dickman s function is named after actuary Karl Dickman, who defined it in his only mathematical publication … Wikipedia
Advanced Function Presentation — (AFP) is a presentation architecture and family of associated printer software and hardware that provides for document and information presentation independent of specific applications and devices. Using AFP, users can control formatting, the… … Wikipedia